حلول الأسئلة
السؤال
يبين الشكل المجاور إحدى الألعاب، فعندما تدور الكرة حول العمود بسرعة زاوية ω (الإزاحة الزاوي مقسومة على الزمن المستغرق)، فإنها تكون مع الحبل L الذي طرفاه s, p، والزاوية المحصورة شكلاً مخروطياً، إذا علمت أن العلاقة بين طول الحبل L والزاوية المحصورة بين الحبل والعمود θ تعطى بالصيغة ، حيث g تسارع الجاذبية الأرضية ويساوي 9.8m/s 2 ، فهل الصيغة هي أيضاً تمثل العلاقة بين θ , L؟ وضح إجابتك.
الحل
نعم الصيغة مثل علاقة بين θ , L.
مشاركة الحل
حل أسئلة تدرب وحل المسائل
أثبت صحة كل من المتطابقات الآتية:
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11) اختيار من متعدد: أي عبارة مما يأتي تكافئ العبارة ؟
- sin 2 θ
- cos 2 θ
- tan 2 θ
- csc 2 θ
أثبت صحة كل من المتطابقات الآتية:
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24) ألعاب: يبين الشكل المجاور إحدى الألعاب، فعندما تدور الكرة حول العمود بسرعة زاوية ω (الإزاحة الزاوي مقسومة على الزمن المستغرق)، فإنها تكون مع الحبل L الذي طرفاه s, p، والزاوية المحصورة شكلاً مخروطياً، إذا علمت أن العلاقة بين طول الحبل L والزاوية المحصورة بين الحبل والعمود θ تعطى بالصيغة ، حيث g تسارع الجاذبية الأرضية ويساوي 9.8m/s2، فهل الصيغة هي أيضاً تمثل العلاقة بين θ , L؟ وضح إجابتك.
نعم الصيغة مثل علاقة بين θ , L.
25) جري: مضمار سباق نصف قطره 16.7m، إذا ركض أحد العدائين في هذا المضمار، وكان جيب زاوية ميله θ يساوي ، فأوجد سرعة العداء.
إرشاد: أوجد cos θ أولاً، ثم استعمل صيغة زاوية الميل الواردة في فقرة "لماذا؟".
بسط كلاً من العبارات الآتية، لتحصل على الناتج 1 أو 1-؟
26)
1
27)
1-
28)
1
29)
1
30)
1
31)
1-
32)
1
33)
1
بسط كلاً مما يأتي إلى قيمة عددية، أو إلى دالة مثلثية أساسية:
34)
35)
36)
37)
38)
1
39)
40)
41) فيزياء: عند إطلاق الألعاب النارية من سطح الأرض، فإن ارتفاع الألعاب y والإزاحة الأفقية x ترتبطان بالعلاقة: ، حيث v0 هي السرعة الابتدائية للمقذوفات، θ زاوية الإطلاق، g تسارع الجاذبية الأرضية، أعد كتابة هذه العلاقة بحيث لا تظهر فيها نسب مثلثية سوى tan θ.
42) إلكترونيات: عند مرور تيار متردد من خلال مقاومة R، فإن القدرة p بعد t من الثواني تعطى بالصيغة: حيث f التردد، I0 أعلى قيمة للتيار.
a) اكتب صيغة للقدرة بدلالة .
b) اكتب صيغة للقدرة بدلالة .
43) تمثيلات متعددة: في هذه المسألة، ستكتشف طريقة حل معادلة مثل 1=2sin x.
a) جبرياً: أعد كتابة المعادلة السابقة بحيث تكون sin x فقط في أحد الطرفين.
sin x=0.5
b) بيانياً: مستعملاً الحاسبة البيانية، مثل كلاً من طرفي المعادلة التي أوجدتها في الفرع (a) بيانياً كدلة في المجال وفي المستوى الإحداثي نفسه، ثم حدد جميع نقاط التقاطع بينهما، وأوجد قيم x بالراديان.
يتقاطع التمثيل البياني للدالتين y=sin x , y=0.5 عند النقاط على الفترة .
c) بيانياً: مستعملاً الحاسبة البيانية، مثل كلاً من طرفي المعادلة التي أوجدتها في الفرع (a) بيانياً كدلة في المجال وفي المستوى الإحداثي نفسه، ثم حدد جميع نقاط التقاطع بينهما، وأوجد قيم x بالراديان.
يتقاطع التمثيل البياني للدالتين y=sin x , y=0.5 عند النقاط على الفترة
d) لفظياً: خمن الصيغة العامة لحلول المعادلة، وضح إجابتك.
بما أن الجيب دالة دورية تكون حلول المعادلة هي