حل أسئلة تدرب وحل المسائل

تدرب وحل المسائل

حدد إذا كانت الحادثتان في الأسئلة (9-6) مستقلتين أم غير مستقلتين، ثم أوجد الاحتمال:

6) رمي مكعب مرقم للحصول على عدد زوجي، ثم إدارة مؤشر قرص مقسم إلى قطاعات متطابقة، ومرقم من 1 إلى 5؛ للحصول على عدد فردي.

مستقلتان، p=3635=310

7) اختيار طالبين حصلا على الدرجة الكاملة في اختبار للرياضيات، واحداً تلو الآخر من صف فيه 25 طالب 5 منهم حصلوا على الدرجة الكاملة.

غير مستقلتان، يوجد لدينا بطاقات 4 بطاقات.

p=452351=1221

8) تكرار سحب كرة زرقاء في تجربة سحب كرتين متتاليتين عشوائياً دون إرجاع، من حقيبة بها 3 كرات خضراء و4 كرات زرقاء.

غير مستقلتان، p=4736=27

9) ظهور العدد 5 على الوجهين العلويين لمكعبين مرقمين متمايزين ألفياً مرة واحدة.

مستقلتان، p=136

10) ألعاب: إذا أدير مؤشر القرص المبين في الشكل المجاور وألقيت قطعة نقد مرة واحدة فما احتمال الحصول على عدد زوجي وظهور كتابة على قطعة النقد؟

القرص الدوار

p==1212=14

11) شعارات: معتمداً على الجدول المجاور، إذا اختير شعاران عشوائياً، فما احتمال أن يكون كلا الشعارين الأول والثاني أحمر؟

جدول الشعارات

p=25702469=20161

12) سحبت كرة حمراء عشوائياً من كيس يحتوي على كرتين زرقاوين و9 كرات حمراء دون إرجاع، ما احتمال سحب كرة حمراء ثانية؟

p=810=45

13) مستطيل محيطه 12وحدة، إذا كانت أطوال أضلاعه أعداداً صحيحة، فما احتمال أن يكون الشكل مربعاً؟

p=412=13

14) رقمت قطاعات متطابقة في قرص من 1 إلى 12، إذا أُدير مؤشر القرص، فما احتمال أن يستقر المؤشر عند العدد 11 إذا علمت أنه استقر عند عدد فردي؟

p=112÷612=112126=16

15) تقنيات: يمتلك %43 من طلاب مدرسة جهازاً نقالاً، و %28 يمتلكون جهازاً نقالاً وجهاز حاسوب، فما احتمال أن يمتلك طالب منهم جهاز حاسوب إذا كان يمتلك جهازاً نقالاً؟

p=28%43%=2843

16) استعمل قانون احتمال حادثتين غير مستقلتين P(AB) لاشتقاق قانون الاحتمال المشروط P(BA).

P(AB)=P(A)P(BA)P(B1A)=P(A|B)P(A)

17) تنس أرضي: إذا كانت نسبة أداء الضربة الأولى دون أخطاء للاعب التنس %40، على حين كانت نسبة الضربة الثانية %70، فأجب عما يأتي:

a) ارسم شجرة الاحتمال التي تبين احتمالات النواتج.

شجرة النواتج

b) ما احتمال أن يرتكب اللاعب خطأً مزدوجاً؟

% 18 أو 0.18

مشاركة الدرس

النقاشات
لايوجد نقاشات

حل أسئلة تدرب وحل المسائل

تدرب وحل المسائل

حدد إذا كانت الحادثتان في الأسئلة (9-6) مستقلتين أم غير مستقلتين، ثم أوجد الاحتمال:

6) رمي مكعب مرقم للحصول على عدد زوجي، ثم إدارة مؤشر قرص مقسم إلى قطاعات متطابقة، ومرقم من 1 إلى 5؛ للحصول على عدد فردي.

مستقلتان، p=3635=310

7) اختيار طالبين حصلا على الدرجة الكاملة في اختبار للرياضيات، واحداً تلو الآخر من صف فيه 25 طالب 5 منهم حصلوا على الدرجة الكاملة.

غير مستقلتان، يوجد لدينا بطاقات 4 بطاقات.

p=452351=1221

8) تكرار سحب كرة زرقاء في تجربة سحب كرتين متتاليتين عشوائياً دون إرجاع، من حقيبة بها 3 كرات خضراء و4 كرات زرقاء.

غير مستقلتان، p=4736=27

9) ظهور العدد 5 على الوجهين العلويين لمكعبين مرقمين متمايزين ألفياً مرة واحدة.

مستقلتان، p=136

10) ألعاب: إذا أدير مؤشر القرص المبين في الشكل المجاور وألقيت قطعة نقد مرة واحدة فما احتمال الحصول على عدد زوجي وظهور كتابة على قطعة النقد؟

القرص الدوار

p==1212=14

11) شعارات: معتمداً على الجدول المجاور، إذا اختير شعاران عشوائياً، فما احتمال أن يكون كلا الشعارين الأول والثاني أحمر؟

جدول الشعارات

p=25702469=20161

12) سحبت كرة حمراء عشوائياً من كيس يحتوي على كرتين زرقاوين و9 كرات حمراء دون إرجاع، ما احتمال سحب كرة حمراء ثانية؟

p=810=45

13) مستطيل محيطه 12وحدة، إذا كانت أطوال أضلاعه أعداداً صحيحة، فما احتمال أن يكون الشكل مربعاً؟

p=412=13

14) رقمت قطاعات متطابقة في قرص من 1 إلى 12، إذا أُدير مؤشر القرص، فما احتمال أن يستقر المؤشر عند العدد 11 إذا علمت أنه استقر عند عدد فردي؟

p=112÷612=112126=16

15) تقنيات: يمتلك %43 من طلاب مدرسة جهازاً نقالاً، و %28 يمتلكون جهازاً نقالاً وجهاز حاسوب، فما احتمال أن يمتلك طالب منهم جهاز حاسوب إذا كان يمتلك جهازاً نقالاً؟

p=28%43%=2843

16) استعمل قانون احتمال حادثتين غير مستقلتين P(AB) لاشتقاق قانون الاحتمال المشروط P(BA).

P(AB)=P(A)P(BA)P(B1A)=P(A|B)P(A)

17) تنس أرضي: إذا كانت نسبة أداء الضربة الأولى دون أخطاء للاعب التنس %40، على حين كانت نسبة الضربة الثانية %70، فأجب عما يأتي:

a) ارسم شجرة الاحتمال التي تبين احتمالات النواتج.

شجرة النواتج

b) ما احتمال أن يرتكب اللاعب خطأً مزدوجاً؟

% 18 أو 0.18